
File Systems: Interface and
Implementation

CSCI 315 Operating Systems Design
Department of Computer Science

Notice: The slides for this lecture have been largely based on those from an earlier
edition of the course text Operating Systems Concepts, 9th ed., by Silberschatz, Galvin,
and Gagne. Many, if not all, the illustrations contained in this presentation come from
this source.

File System Topics

• File Concept
• Access Methods
• Directory Structure
• File System Mounting
• File Sharing
• Protection

File Concept

• A file is a named collection of related information
recorded on secondary storage.

• “Contiguous” logical address space.
• File types:

– Data:
• numeric.
• character.
• binary.

– Program (executable).

File Structure
• None: just a sequence of words or bytes.
• Simple record structure:

– Lines,
– Fixed length,
– Variable length.

• Complex Structures:
– Formatted document,
– Relocatable load file.

• Can simulate last two with first method by inserting
appropriate control characters.

• Who decides:
– Operating system,
– Program.

File Attributes
• Name – only information kept in human-readable form.

• Type – needed for systems that support different types.

• Location – pointer to file location on device.

• Size – current file size.

• Protection – controls who can do reading, writing, executing.

• Time, date, and user identification – data for protection,
security, and usage monitoring.

Information about files is kept in the directory structure,
which resides on the disk.

File Types: Name and Extension

File Control Block

Users and Passwords

• In Unix, globally readable file
/etc/passwd maps each user’s
name to an integer number, to a
home directory, and to a shell.

• /etc/shadow maps each user to a
an encrypted (actually, hashed)
password. Not readable to prevent
“password guessing” attacks.

Groups

• In Unix, /etc/group maps each
group’s name to an integer number
and to a collection of users

chgrp game mine

group file

Access Control: Protection Bits
• Mode of access: read (r), write (w), execute (x)
• Three classes of access
 rwx
 a) owner access 7 ⇒ 1 1 1 (octal ⇒ binary)

 rwx
 b) group access 6 ⇒ 1 1 0
 rwx
 c) public access 1 ⇒ 0 0 1

• For a particular file (say game) or subdirectory, define an appropriate
access.

user group other

chmod 761 mine

user

other

user

chmod u+rwx mine

Access Control (Protection)
• File owner/creator should be able to control:

– what can be done,
– by whom.

• Types of access:
– Read,
– Write,
– Execute,
– Append,
– Delete,
– List.

Discretionary Access Control (DAC)

Users decide what to share and
with whom to share (no policy):
flexible.

Users can make bad decisions
and share with the wrong
people what they shouldn’t be
sharing.

Access Control (Protection)
• Mandatory Access Control (MAC):

– System policy: files tied to access levels = (public,
restricted, confidential, classified, top-secret).

– Process also has access level: can read from and write to
all files at same level, can only read from files below, can
only write to files above.

A policy that guarantees information access rights
for each user based on their needs is determined
in advance and strictly enforced by the system.

Users are locked into the policy and changes in
access rights requires a revision of the policy
and the action of an administrator.

Access Control (Protection)
• Role-Based Access Control (RBAC):

– System policy: defines “roles” (generalization of the Unix idea
of groups).

– Roles are associated with access rules to sets of files and
devices.

– A process can change roles (in a pre-defined set of possibilities)
during execution.

A policy determines information access rights for each role based
on needs is determined in advance and is strictly enforced by the
system. Users can be granted access to multiple roles. The
assignment of users to roles can be changed more easily.

The a change in the rights for each roles requires a change in the
policy and actions carried out by an administrator

File Operations
• Create.

• Write.

• Read.

• Random access.

• Delete.

• Append.

• Truncate (reset size to 0, keep current attributes).

• Open(Fi) – search the directory structure on disk for entry Fi,
and move the content of entry to memory.

• Close (Fi) – move the content of entry Fi in memory to
directory structure on disk.

Open Files
Several pieces of data are needed to manage open files:

• Open-file table: tracks open files

• File pointer: pointer to last read/write location, per
process that has the file open

• File-open count: counter of number of times a file is
open – to allow removal of data from open-file table when
last processes closes it

• Disk location of the file: cache of data access
information

• Access rights: per-process access mode information

Open File Locking

➡ Provided by some operating systems and file systems

•Similar to reader-writer locks

•Shared lock similar to reader lock – several processes can acquire
concurrently

•Exclusive lock similar to writer lock

➡ Mediates access to a file

➡ Mandatory or advisory:

•Mandatory – access is denied depending on locks held and
requested

•Advisory – processes can find status of locks and decide what to do

Access Methods

• Sequential Access read next
write next
reset
no read after last write

(rewrite)

• Direct Access read n
write n
position to n

read next
write next

rewrite n

n = relative block number

Sequential-access File

Simulation of Sequential Access
on a Direct-access File

Other Access Methods

• Can be built on top of base methods
• General involve creation of an index for the file
• Keep index in memory for fast determination of location of

data to be operated on (consider UPC code plus record of
data about that item)

• If too large, index (in memory) of the index (on disk)
• IBM indexed sequential-access method (ISAM)
• Small master index, points to disk blocks of secondary index
• File kept sorted on a defined key
• All done by the OS
• VMS operating system provides index and relative files as

another example (see next slide)

Index and Relative Files

Operations on Directories

• Search for a file.
• Create a file.
• Delete a file.
• List a directory.
• Rename a file.
• Traverse the file system.

mkdir, rmdir, ls, mv, …

Directory Structure
Directory: a symbol table that translates file names into

directory entries.

ping

emacs

ifconfig

mount

fdisk

find

…

…

Both the directory structure and the files reside on disk.
Backups of these two structures are kept on tapes.

Links

In Unix, the command ln allows the
user to create symbolic and hard
links.

• symbolic link - a directory
entry that points to another
directory entry.

• hard link - “another” directory
entry that points to a file object that
already appeared in the directory.

Links

data.txt

stuff.dat

counter.py

numbers.dat

mydata.txt

…

…

file data.txt

file numbers.dat

symbolic link

hard link

RTFMP Interlude

LN(1) User Commands

NAME
 ln - make links between files

SYNOPSIS
 ln [OPTION]... [-T] TARGET LINK_NAME (1st form)

…

 -s, --symbolic
 make symbolic links instead of hard links

Goals of Directory Logical
Organization

• Efficiency – locating a file quickly.

• Naming – convenient to users.
– Two users can have same name for different files.
– The same file can have several different names.

• Grouping – logical grouping of files by properties,
(e.g., all Java programs, all games, …)

Single-Level Directory

Two-Level Directory

Tree-Structured Directories

Acyclic-Graph Directories

General Graph Directory

Single-Level Directory

A single directory for all users.

Drawbacks:
Naming problem
Grouping problem

Two-Level Directory
A separate directory for each user.

• Path name.
• Can have the same file name for different user.
• Efficient searching.
• No grouping capability.

Tree-Structured Directories

Tree-Structured Directories
(Cont.)

• Efficient searching.

• Grouping Capability.

• Current directory (working directory):
– cd /spell/mail/prog,
– type list.

Tree-Structured Directories
(Cont.)

• Absolute or relative path name.
• Creating a new file is done in current directory by default.
• Delete a file

rm <file-name>
• Creating a new subdirectory is done in current directory.

mkdir <dir-name>

Example: if in current directory /mail
 mkdir count

mail

prog copy prt exp count

rm -rf . ⇒ doesn’t mean “read mail really fast”

Acyclic-Graph Directories
Have shared subdirectories and files

links: soft (symbolic)

 hard

Unix: ln (read man page);

need to keep a reference count on
each file or directory.

Acyclic-Graph Directories (Cont.)

• Different names (aliasing) for the same file or
directory.

• Must be careful with removals to avoid
dangling pointer.
Solutions:
– Backpointers, so we can delete all pointers.

Variable size records a problem.
– Backpointers using a daisy chain organization.
– Entry-hold-count solution.

General Graph Directory

General Graph Directory (Cont.)

• How do we guarantee no cycles?
– Allow only links to files, never to subdirectories.
– Garbage collection.
– Every time a new link is added use a cycle

detection algorithm to determine whether it is
OK.

Disk Structure

• Disk can be subdivided into partitions
• Disks or partitions can be RAID protected against failure
• Disk or partition can be used raw (without a file system) or

formatted with a file system
• Partitions also known as minidisks, slices
• Entity containing file system known as a volume
• Each volume containing file system also tracks that file

system’s info in device directory or volume table of
contents

• As well as general-purpose file systems there are many
special-purpose file systems, frequently all within the same
operating system or computer

Partitions and Directories
(File system organization)

Directory Implementation

• Linear list of file names with pointer to the data
blocks:
– simple to program, but…
– time-consuming to execute.

• Hash Table:
– decreases directory search time,
– collisions – situations where two file names hash to

the same location,
– fixed size.

The directory is a symbol table that maps file names to pointers that lead to
the blocks comprising a file.

In-Memory File System Structures

file open

file read

Virtual File Systems
• Virtual File Systems (VFS) provide an object-

oriented way of implementing file systems.

• VFS allows the same system call interface (the
API) to be used for different types of file
systems.

• The API is to the VFS interface, rather than any
specific type of file system.

File System Mounting
• A file system (partition) must be mounted before it can be accessed.

Mounting allows one to attach the file system on one device to the file
system on another device.

• A unmounted file system needs to be attached to a mount point before it
can be accessed.

existing unmounted

File Sharing

• Sharing of files on multi-user systems is desirable.

• Sharing may be done through a protection scheme.

• On distributed systems, files may be shared
across a network.

• Network File System (NFS) is a common
distributed file-sharing method.

File-System Structure

• File structure:
– Logical storage unit,
– Collection of related information.

• File system resides on secondary storage
(disks).

• File system is organized into layers.
• File control block – storage structure

consisting of information about a file.

Layered File System

Schematic View of a
Virtual File System

ext4 FAT 32 NFS

same API for
all file system
types

Disk Allocation Methods

An allocation method refers to how disk
blocks are allocated for files. We’ll discuss
three options:

 Contiguous allocation,
 Linked allocation,
 Indexed allocation.

Contiguous Allocation
• Each file occupies a set of contiguous blocks on

the disk.

• Simple: only starting location (block #) and length
(number of blocks) are required.

• Suitable for sequential and random access.

• Wasteful of space: dynamic storage-allocation
problem.

• Files cannot grow unless more space than
necessary is allocated when file is created (clearly
this strategy can lead to internal fragmentation).

Contiguous Allocation of Disk Space
To deal with the dynamic
allocation problem
(external fragmentation),
the system should
periodically compact the
disk.

Compaction may take a
long time, during which the
system is effectively down.

To deal with possibly
growing files, one needs to
pre-allocate space larger
than required at the initial
time which leads to
internal fragmentation.

Does this disk allocation, in general, suffer from internal fragmentation?
Does this method suffer from external fragmentation?

Extent-Based Systems
• Many newer file systems (i.e. Veritas File System) use a

modified contiguous allocation scheme.

• Extent-based file systems allocate disk blocks in
extents.

• An extent is a contiguous set of blocks. Extents are
allocated for each file. A file consists of one or more
extents.

• Extents can be added to an existing file that needs
space to grow. A block can be found given by the
location of the first block in the file and the block count,
plus a link to the first extent.

Linked Allocation
Each file is a linked list of
disk blocks.

Simple: need only starting
address.

Overhead: each block links to
the next.

Space cost to store pointer.

Time cost to read one block
to find the next.

Internal fragmentation, but
not external.

Sequential access comes
naturally, random does not.

File-Allocation Table (FAT)
Simple and efficient: One
entry for each block; indexed
by block number. The table is
implements the list linking the
blocks in a file.

Growing a file is easy: find a
free block and link it in.

Random access is easy.

The FAT should be cached
in memory.

If the FAT is not cached in
memory, a considerable
number of disk seeks
happens.

Used by MS-DOS and OS/2.

Indexed Allocation
Brings all pointers together
into an index block.

One index block per file.

Random access comes easy.

Dynamic access without
external fragmentation, but
have overhead of index block.

Wasted space: how large
should an index block be to
minimize the overhead?

• linked index blocks
• multilevel index
• combined scheme

Combined Scheme: UNIX
If file is small enough, use
only direct blocks pointers.

If number of blocks in file is
greater than the number of
direct block pointers, use
single, double, or triple
indirect.

Additional levels of indirection
increase the number of blocks
that can be associated with a
file.

Index blocks can be cached in
memory, like FAT. Access to
data blocks, however, may
require many disk seeks.

Free-Space Management
• Bit vector (1 bit per disk block)
• Linked list (free list)
• Grouping

– like linked list: first free block has n block addresses (the n-1
addresses are free blocks, the nth is the address of a block
with the next bundle of addresses)

• Counting
– like linked list, but each node points to a cluster of

contiguous, free blocks

The OS can cache in memory the free-space management structures for
increased performance. Depending on disk size, this may not be easy.

Bit Vector

0 1 2 3 4 5 6 7 8 9

101010111111010011111000001111…

Bit Vector (or Bit Map)

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

…

Linked List

Grouping

0 1 2 3 4 5 6 7 8 9
2
3
4

1
first free block

5

10 11 12 13 14 15 16 17 18 19
12
13
14
15

11

16
17

20 2221 23 24
…21

22
25

20

0 1 2 3 4 5 6 7 8 9
2
3
4

1
first free block

5

10 11 12 13 14 15 16 17 18 19
12
13
14
15

11

16
17

20 2221 23 24
…21

22
25

20

Grouping

Counting

0 1 2 3 4 5 6 7 8 9

1, 5

first free block

25,
4

10 11 12 13 14 15 16 17 18 19

12,
7

31,
10

20 21 22 23 24 25 26 27 28 29

…

Counting

0 1 2 3 4 5 6 7 8 9

1, 5

first free block

25,
4

10 11 12 13 14 15 16 17 18 19

12,
7

31,
10

20 21 22 23 24 25 26 27 28 29

…

Recovery

• Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies. (Takes time!)

• What events or failures can cause file system
inconsistency?

• Philosophy: Allow structures to break and provide
ways to repair them.

• Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape).

• Recover lost file or disk by restoring data from
backup.

Log-Structured File Systems

• Log-structured (or journaling) file systems record
each update to the file system as a transaction.

• All transactions are written to a log. A transaction is
considered committed once it is written to the log
(the file system may not yet be updated).

• The transactions in the log are asynchronously
written to the file system. When the file system is
modified, the transaction is removed from the log.

• After a system crash, all transactions that remained in
the file system log are performed.

