
Memory Management
CSCI 315 Operating Systems Design

Department of Computer Science

Notice: The slides for this lecture are based on those from Operating Systems
Concepts, 9th and 10th eds., by Silberschatz, Galvin, and Gagne. Many, if not all, the
illustrations contained in this presentation come from this source.

Background

• Program must be brought into memory and
placed within a process for it to be run. 

• Input queue – collection of processes on the
disk that are waiting to be brought into memory
to run the program. 

• User programs go through several steps before
being run.

Binding of Instructions and  
Data to Memory

• Compile time: If memory location known a priori,
absolute code can be generated; must recompile code
if starting location changes.

• Load time: Must generate relocatable code if
memory location is not known at compile time.

• Execution time: Binding delayed until run time if the
process can be moved during its execution from one
memory segment to another. Need hardware support
for address maps (e.g., base and limit registers).

Address binding of instructions and data to memory addresses can  
happen at three different stages:

Processing of a User’s Program
source

program

compiler or
assembler

object
module

linkage editor

load
module

loader

in-memory
binary

memory
image

other
object

module

system
library

dynamically
loaded
system
library

compile
time

load
time

execution
timedynamic

linking

Logical vs. Physical Address Space
• The concept of a logical address space that is bound

to a separate physical address space is central to
proper memory management.

– Logical address – generated by the CPU; also referred to as
virtual address.

– Physical address – address seen by the memory unit. 

• Logical and physical addresses are the same in compile-
time and load-time address-binding schemes; logical
(virtual) and physical addresses differ in execution-time
address-binding scheme.

Memory-Management Unit
(MMU)

• Hardware device that maps virtual to physical
address. 

• With an MMU, the value in the relocation register
is added to every address generated by a user
process at the time it is sent to memory. 

• The user program deals with logical addresses;
it never sees the real physical addresses.

Dynamic relocation using a
relocation register

CPU

14000

relocation
register

+

MMU

memory

logical
address

physical
address

346 14346

Hardware Support for Relocation and
Limit Registers 

CPU memory

logical
address

physical
address< +

relocation
register

limit
register

yes

no

trap;
addressing error

Dynamic Loading

• Routine is not loaded until it is called.
• Better memory-space utilization; unused routine is

never loaded.
• Useful when large amounts of code are needed to

handle infrequently occurring cases.
• No special support from the operating system is

required; implemented through program design.

Dynamic Linking

• Linking postponed until execution time.
• Small piece of code, stub, used to locate the

appropriate memory-resident library routine.
• Stub replaces itself with the address of the routine,

and executes the routine.
• Operating system needed to check if routine is in

processes’ memory address.
• Dynamic linking is particularly useful for libraries.

Overlays

• Keep in memory only those instructions and data that
are needed at any given time.

• Needed when process is larger than amount of
memory allocated to it.

• No special support needed from operating system;
implemented by user; programming design of overlay
structure can be complex.

Swapping
• A process can be swapped temporarily out of memory to a

backing store, and then brought back into memory for
continued execution. 

• Backing store – fast disk, large enough to accommodate
copies of all memory images for all users; must provide direct
access to these memory images. 

• Roll out, roll in – swapping variant used for priority-based
scheduling algorithms; lower-priority process is swapped out
so higher-priority process can be loaded and executed. 

• Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped. 

• Modified versions of swapping are found on many systems
(i.e., UNIX, Linux, and Windows).

Schematic View of Swapping

Operating
System

user space
process

P1

process
P2

swap out

swap in

main memory

backing storage

Contiguous Allocation
• Main memory usually into two partitions:

– Resident operating system, usually held in low memory with
interrupt vector.

– User processes then held in high memory. 

• Single-partition allocation
– Relocation-register scheme used to protect user processes from

each other, and from changing operating-system code and data.
– Relocation-register contains value of smallest physical address;

limit register contains range of logical addresses – each logical
address must be less than the limit register.

Contiguous Allocation
• Multiple-partition allocation

– Hole – block of available memory; holes of various size are
scattered throughout memory.

– When a process arrives, it is allocated memory from a hole large
enough to accommodate it.

– Operating system maintains information about: 
a) allocated partitions b) free partitions (hole)

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

process 9

process 10

Dynamic Storage-Allocation
Problem

• First-fit: Allocate the first hole that is big enough.
• Best-fit: Allocate the smallest hole that is big

enough; must search entire list, unless ordered
by size. Produces the smallest leftover hole.

• Worst-fit: Allocate the largest hole; must also
search entire list. Produces the largest leftover
hole.

How to satisfy a request of size n from a list of free holes.

First-fit is better than best-fit and worst-fit in terms of speed.
What about the efficient use of storage?

Sidebar:
The Memory Labs

A Custom Memory Allocator

M bytes
(contiguous)

void *allocate (int size);

void deallocate (void *p);

M bytes
(contiguous)

free

allocated

0

M-1

NULL

head tail

head tail

NULLNULL

nextprev

data

0

M

Initial
State

M-100

free

allocated

0

M-1

head tail

head tail

NULLNULL

nextprev

data

100

M-100

ptr1 = allocate(100);

NULLNULL
data

next

0

100

100
99

free

allocated

0

M-1

head tail

head tail

NULLNULL

nextprev

data

150

M-150

ptr2 = allocate(50);

NULLNULL
data

next

0

100

100
99

149 50
data

next

100

50
prev

prev

M-150

free

allocated

0

M-1

head tail

head tail

NULLNULL

nextprev

data

350

M-350

ptr3 = allocate(200);

NULLNULL
data

next

0

100

100
99

149 50
data

next

100

50
prev

prev

next

prev 200

data

150

200

349

M-350

free

allocated

0

M-1

head tail

head tail

NULLNULL

next
prev

data

350

M-350

deallocate(ptr2);

NULLNULL
data

next

0

100

100
99

149

nextprev

data

100

50prev
next

prev 200

data

150

200

349

M-350

50

End of Sidebar

Fragmentation

• External Fragmentation – total memory space exists to satisfy a
request, but it is not contiguous.

• Internal Fragmentation – allocated memory may be slightly larger
than requested memory; this size difference is memory internal to a
partition, but not being used.

• Reduce external fragmentation by compaction:
– Shuffle memory contents to place all free memory together in one large

block.
– Compaction is possible only if relocation is dynamic, and is done at

execution time.
– I/O problem

• Latch job in memory while it is involved in I/O.
• Do I/O only into OS buffers.

Segmentation
A memory management scheme that
supports the user view of memo.

Segment: a logical unit
stack

heap

symbol
table

main

function

data

user space: logical addresses

Segmentation
RAM

logical
addresses

physical
address

CPU

Address generated by CPU is divided into:
– Segment number (s) – used as an index into

a segment table which contains base address
of each segment in physical memory. 

– Page offset (d) – combined with base
address to define the physical memory
address.

Address Translation Scheme

Segmentation

logical address: segment number offset

L bits

n bitsm = L-n bits

For a fixed L, how do you determine m and n?

Segmentation

How do you find a process’ segment table?
How do you know much memory a segment has?

Segmentation

Segment-table base
register (STBR)

Segment-table length
register (STLR)

Does this architecture change what you understand as
the state of a process?

Effective Access Time

How does
segmentation

affect the
memory access

time?

Paging
• Logical address space of a process can be noncontiguous; process

is allocated physical memory whenever the latter is available.
• Divide physical memory into fixed-sized blocks called frames (size

is power of 2, between 512 bytes and 8192 bytes).
• Divide logical memory into blocks of same size called pages.
• Keep track of all free frames.
• To run a program of size n pages, need to find n free frames and

load program.
• Set up a page table to translate logical to physical addresses.

• Internal fragmentation.

Paging
RAM

logical
addresses

physical
address

CPU

Address generated by CPU is divided into:
– Page number (p) – used as an index into a

page table which contains base address of
each page in physical memory. 

– Page offset (d) – combined with base
address to define the physical memory
address.

Address Translation Scheme

Address Translation Scheme

logical address: page number page offset

L bits

n bitsm = L-n bits

For a fixed L, how do you determine m and n?

Paging

What if you want to be able to configure page length in
software?

Paging

Page-table base
register (PTBR)

Page-table length
register (PTLR)

Does this architecture change what you understand as
the state of a process?

Effective Access Time

How does
paging affect the
memory access

time?

Logical and Physical Memory

Where is the page table stored?

How can we know which frames are
free or allocated?

Paging Example

What determines the effective access time
(EAT) in this memory system?

Implementation of Page Table
• Page table is kept in main memory.

• Page-table base register (PTBR) points to the page table.

• Page-table length register (PRLR) indicates size of the page
table.

• In this scheme every data/instruction access requires two memory
accesses. One for the page table and one for the data/instruction.

• The two memory access problem can be solved by the use of a
special fast-lookup hardware cache called associative memory or
translation look-aside buffers (TLBs).

Associative memory – parallel search

Address translation (A´, A´´)

– If A´ is in associative register, get frame # out.
– Otherwise get frame # from page table in memory

Associative Memory

Page # Frame #

Associative memory is used to implement a TLB. Note that the TLB is nothing more
than a special purpose cache memory to speed up access to the page table.

Translation Lookaside Buffer

Is the TLB hardware or
software?

Effective Access Time
• Associative Lookup = ε time units
• Assume RAM latency is Δ time units
• Hit ratio – percentage of times that a process’

page number is found in the TLB’s associative
registers

• Hit ratio = α, miss ratio = (1-α)
• Effective Access Time (EAT)

 EAT = (ε + Δ) α + (2ε + 2Δ)(1 – α)

Memory Protection

• Memory protection implemented by associating
protection bits with each frame. 

• Valid-invalid bit attached to each entry in the
page table:
– “valid” indicates that the associated page is in the

process’ logical address space, and is thus a legal
page.

– “invalid” indicates that the page is not in the process’
logical address space.

Valid Bits

Added Benefit: shared pages

Shared Pages
• Shared code

– One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems).

– Shared code must appear in same location in the logical
address space of all processes. 

• Private code and data
– Each process keeps a separate copy of the code and data.
– The pages for the private code and data can appear anywhere

in the logical address space.

Large Page Table?
• Break up the logical address
space into multiple page tables

• A simple technique is a two-
level page table

• The page table is broken into
pages

logical address:

P1 page offset

L bits

n bitspage number: P1 + P2 bits

P2

Address Translation

aggregates all
the pages that
together make
up the page
table

Two-Level Paging Example
• A logical address (on 32-bit machine with 4K page size) is divided into:

– a page number consisting of 20 bits.
– a page offset consisting of 12 bits.

• Since the page table is paged, the page number is further divided into:
– a 10-bit page number.
– a 10-bit page offset.

• Thus, a logical address is as follows: 
 
 
 
 
 
 
 
where p1 is an index into the outer page table, and p2 is the
displacement within the page of the outer page table.

page number page offset
p1 p2 d

10 10 12

